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The stability of two-dimensional thermal convection in an infinite-Prandtl-number 
fluid layer with zero-stress boundaries is investigated using numerical calculations in 
three-dimensional rectangles. At low Rayleigh numbers (Ra < 20 000) calculations of 
the stability of two-dimensional rolls to cross-roll disturbances are in agreement with 
the predictions of Bolton & Busse for a fluid with a large but finite Prandtl number. 
Within the range 2 x lo4 < Ra < 5 x lo5, steady rolls with basic wavenumber 
a > 2.22 (aspect ratio < 1.41) are stable solutions. Two-dimensional rolls with basic 
wavenumber 01 < 1.96 (aspect ratio > 1.6) are time dependent for Ra > 4 x lo4. For 
every case in which the initial condition was a time-dependent large-aspect-ratio roll, 
two-dimensional convection was found to be unstable to three-dimensional 
convection. Time-dependent rolls are replaced by either bimodal or knot convection 
in cases where the horizontal dimensions of the rectangular box are less than twice 
the depth. The bimodal planforms are steady states for Ra 6 lo5, but one case a t  
Ra = 5 x lo5 exhibits time dependence in the form of pulsating knots. Calculations at  
Ra = lo5 in larger domains resulted in fully three-dimensional cellular planforms. A 
steady-state square planform was obtained in a 2.4 x 2.4 x 1 rectangular box, started 
from random initial conditions. Calculations in a 3 x 3 x 1 box produced steady 
hexagonal cells when started from random initial conditions, and a rectangular 
planform when started from a two-dimensional roll. An hexagonal planform started 
in a 3.5 x 3.5 x 1 box at Ra = lo5 exhibited oscillatory time dependence, including 
boundary-layer instabilities and pulsating plumes. Thus, the stable planform in 
three-dimensional convection is sensitive to the size of the rectangular domain and 
the initial conditions. The sensitivity of heat transfer to planform variations is less 
than 10%. 

1. Introduction 
We present results of numerical calculations of three-dimensional, time-dependent, 

infinite-Prandtl-number thermal convection in a rectangular box with free-slip 
boundaries, which is heated from below and cooled from above, for Rayleigh 
numbers Ra < 5 x lo5. The objectives are to determine the stability of two- 
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dimensional rolls to three-dimensional disturbances at  Rayleigh numbers far above 
the critical value, and to establish the preferred three-dimensional planforms when 
two-dimensional flows are unstable. Rayleigh-BBnard convection in an infinite- 
Prandtl-number incompressible fluid is the simplest fluid mechanical analogue to 
thermal convection in the Earth's mantle. This model system represents an extreme 
idealization of mantle convection, since it does not include many of the effects that 
are important in subsolidus mantle convection, including sphericity, variable 
rheology, internal heat production and compressibility. It is nevertheless an 
interesting case to study for several reasons. Most of the numerical experiments in 
the literature which are purported to be realistic simulations of mantle convection in 
fact resolve only two dimensions of motion, whereas flow in the mantle is in fact 
three-dimensional. It is therefore important to determine the effects that arise solely 
from adding the third dimension, without additional complications present. This is 
most easily done in the context of the classical problem of Rayleigh-BBnard 
convection in a homogeneous fluid, for which the structure of two-dimensional flow 
is well established. In addition, the practical difficulties associated with producing 
free-slip boundaries has discouraged experimental work on this problem. As a result, 
the three-dimensional structure of infinite-Prandtl-number convection between 
stress-free plane boundaries a t  high Rayleigh numbers is still largely undetermined. 

The changes in flow structure in a thermally convecting, high-Prandtl-number 
fluid with rigid and isothermal horizontal plane boundaries is well known from both 
analytical studies (Busse 1 9 6 7 ~ )  and experiment (Busse & Whitehead 1971 ; 
Whitehead & Parsons 1978). Two-dimensional convection rolls are the stable 
planform only over a limited range of horizontal wavenumbers (or cell aspect ratios) 
and more importantly only over a limited range of Rayleigh numbers. Above Ra = 
2 x lo4, two-dimensional rolls with arbitrary wavenumber are replaced by steady 
bimodal convection consisting of a superposition of two orthogonal sets of rolls, 
which are in turn replaced a t  larger Rayleigh numbers by time-dependent, three- 
dimensional flow. In contrast, much less is known of the behaviour of the same 
system when the horizontal boundaries are zero-stress surfaces. Stability analyses of 
Rayleigh-BBnard convection with free-slip boundaries by Straus ( 1972) and by 
Bolton & Busse (1985) demonstrated that two-dimensional rolls with wavenumbers 
near the critical value are stable to infinitesimal three-dimensional disturbances up 
to Ra = 2 x lo4 in an infinite-Prandtl-number fluid. At large but finite Prandtl 
number, the Rayleigh number-wavenumber regime of stable two-dimensional rolls 
is limited to the neighbourhood of the critical point (Ra, = 657 ; a, = 2.23) by the 
presence of cross-roll and skewed varicose instabilities. The growth rate of the 
skewed varicose instability vanishes as the Prandtl number approaches infinity. 
Thus, the stable planforms are different for large (but finite)-Prandtl-number fluids 
and effectively infinite-Prandtl-number fluids when the boundaries are stress-free. 
Two-dimensional rolls are virtually always unstable at finite Prandtl number, 
whereas they remain stable in the limit of infinite Prandtl number well beyond the 
critical Rayleigh number. Bolton & Busse (1985) have determined the wavenumber 
limits for stable two-dimensional rolls for Ra < 2 x lo4, and their results are 
reproduced in figure 1. They found that the stability boundaries (defined by the 
occurrence of high- and low-wavenumber cross-rolls, respectively) do not intersect 
below Ra = 2 x lo4, and unlike the case of Rayleigh-Be'nard convection between 
rigid surfaces, rolls with wavenumbers near the critical value remain stable. 
Recently, Schnaubelt & Busse (1989) have extended the analysis to high Rayleigh 
numbers, in an effort to determine if a Rayleigh number limit to stable rolls exists. 
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Using a Galerkin method (modal expansion), Schnaubelt & Busse found that 
stability of two-dimensional rolls is extremely sensitive to the truncation level used 
in the modal expansion. In the region of stable rolls, the growth rate of cross-roll 
instabilities decreased as the truncation level increased. They concluded that rolls 
with wavenumbers near three are marginally stable for Ra < lo6 and perhaps even 
higher. Their extension of the Bolton & Busse curve is shown in figure 1. 

Fully three-dimensional numerical simulations of Rayleigh-BBnard convection in 
large domains are now practical and the literature on this subject is growing rapidly. 
Most of the published results are for finite-Prandtl-number fluids (Grotzbach 1982 ; 
Curry, Herring & Orszag 1984; Clever & Busse 1989). Even for the restricted case of 
infinite Prandtl number and stress-free boundaries, which is the relevant case for 
mantle convection, results have been reported recently for both Cartesian (Frick, 
Busse & Clever 1983 ; Cserepes, Rabinowicz & Rosenberg-Borot 1988 ; Houseman 
1988) and spherical shell geometries (Baumgardner 1985 ; Bercovici et al. 1989; 
Glatzmaier 1989; Machetel, Rabinowicz & Bernardet 1986 ; Zebib, Goyal & Schubert 
1985). There has been no comprehensive analysis of planform instabilities in 
Cartesian geometry. In this paper we demonstrate that it is necessary to use domains 
with large horizontal dimensions in order to determine the preferred planforms when 
the flow is fully three-dimensional. The results obtained to date using spherical shell 
geometries, generally limited to Rayleigh numbers below lo5, are remarkably 
consistent in one respect. They indicate that the preferred planform consists of 
descending sheet-like flow surrounding columnar or broad upwellings, irrespective of 
the mode of heating, or the presence of compressibility (Bercovici et a2. 1989). If it 
is confirmed that this flow structure persists at  larger Rayleigh numbers, and is not 
destroyed by introduction of temperature-dependent rheology , then this result 
constitutes an important theoretical prediction of the structure of mantle convection 
on the largest scales. In $5 we show that similar flow structures can occur even in the 
relatively simple case of base-heated plane layer convection. 

2. Planform instabilities 
The simplest possible planform of motion in cellular convection, and the one that 

serves as the basic state in these calculations, is periodic two-dimensional rolls, with 
a single non-zero component of vorticity along some horizontal direction. These are 
referred to as stable rolls (SR). A cross-roll (CR) instability results in the replacement 
of a set of rolls with unstable wavenumber by an orthogonal set with a stable 
wavenumber. The final state is again two-dimensional. Bimodal (BM) convection is 
three-dimensional flow consisting of a superposition of two orthogonal sets of rolls. 
In the classic bimodal instability, as it occurs in Rayleigh-BBnard convection with 
rigid boundaries, the secondary rolls have smaller amplitude and higher wavenumber 
than the primary set. Knot convection consists of bimodal flow with well-developed 
orthorhombic ascending and descending plumes. A variation of this flow is bimodal 
convection with hexagonal knots, due to the presence of oblique sets of disturbance 
rolls. In this paper, bimodal flows with well-defined vertices are collectively referred 
to as knot convection, as the term is used by Clever & Busse (1989). Fully three- 
dimensional periodic cellular flows, in which centres of vertical motion are separated 
by completely connected regions with opposing vertical motion include hexagons 
(HX) and rectangles, with square cells (SQ) being a special case of the latter. Two 
polarities are possible for these planforms, for example up-hexagons (HX + ) with 
rising columns surrounded by sinking sheets, and down-hexagons (HX - ) with the 
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directions of motion reversed. A description of these symmetries in terms of normal 
mode components is given in Malkus & Veronis (1958) and in Busse (1981). 

3. Governing equations and method of solution 
Conservation of momentum, mass and energy for thermal convection in an 

infinite-Prandtl-number, Boussinesq fluid layer can be written in dimensionless form 
as 

V2u = V P - R a T f ,  (1) 

v . u  = 0, (2) 

(3) 
a 
at 

where u is the fluid velocity, T is temperature, P is pressure with the hydroststic 
component removed, z" is the unit vertical vector, and Ra is the Rayleigh number, 
given by 

- T + ( u . V ) T =  V2T, 

BgATD3 
Ra = 

KV (4) 

Here AT is the temperature difference between bottom and top surfaces of the 
fluid, p is the thermal expansion coefficient, g is acceleration due to gravity, K is 
thermal diffusivity, v is kinematic viscosity and D is the layer depth, all assumed 
constant, Equations (1)-(3) are made dimensionless using the layer depth D, the 
thermal diffusion timescale P/K and the applied temperature difference AT as units 
of length, time and temperature, respectively. The pressure scale is ~ u K / D ~ ,  where p 
is the undisturbed fluid density. 

We decompose (1) into scalar equations by expressing the velocity field as the sum 
of a poloidal and toroidal part, up and uT, each satisfying incompressibility (2) 
identically : 

In terms of the scalar potentials $ and 7 the (2, y, x )  components of velocity (u, v, w) 
are 

u = u , + u , = v x v x ~ y i r v x z " ~ .  (5) 

Application of the operators ( 2 - V  x ) and ( f - V  x V x ) to (1) and substitution of (5) 
results in 

v27 = 0 (7) 

and V4$ = Ra T. (8) 

In terms of $, 7 and T ,  the boundary conditions are as follows. The horizontal 
surfaces are assumed to be impermeable, free-slip and isothermal, so that 

The domain of computation consists of a rectangular box with unit height and with 
horizontal dimensions X and Y in the x- and y-coordinate directions. All vertical 
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sidewalls are assumed to be impermeable, free-slip and thermally insulating, which 
results in the conditions 

It is immediately seen that the solution to (7) for the toroidal stream function 
satisfying conditions (9.) and (10) is identically zero. 

Equations (3) and (8), subject to the boundary conditions given by (9) and (lo),  are 
solved numerically using the following scheme. The finite-difference mesh consists of 
rectangular cells with dimensions (Ax, Ay, Az). Both the stream function $ and the 
velocity components (u, w, w) are evaluated at  cell corners, while temperature T is 
evaluated at cell centres. Time is advanced explicitly, and ~ is determined using 
temperatures from the preceding time step. 

The biharmonic equation (8) is first reduced to a set of Poisson equations 

V2w = RaT, V2$ = w ( l la ,  b) 

with the higher derivative boundary conditions written in terms of w .  Fourier 
transformation of (11) in the horizontal plane yields 

where k2 = + ki and the carets denote Fourier transforms. The ordinary differential 
equations (12) are discretized using centred differences, and the resulting tridiagonal 
matrix equation, including the Fourier transformed boundary conditions (9) and 
(10)) is solved using cyclic reduction (Sweet 1977). Velocity components are then 
calculated by inverse Fourier transformation of + and centred-difference approxi- 
mations of (6). 

The temperature equation (3) is advanced in time using an O(At2,Ax4) finite- 
difference scheme. Integration of (3) over a cell volume AG!, and approximation of 
the time derivative by a forward difference yield 

I[g+ V. (uT- VT) dS1 dt x (TR+l- Tn) AS1 + s, s (uT- VT)n - dA, dt, (13) 

where n is the time level and 1 = 1,2 ,3  denotes the cell face, whose area is A,. Over 
each cell face the second term on the right-hand side of (13) is evaluated as 

/[(uT-VT)*dAdt x At (uT-VT)n-dA, ss 
which is integrated exactly, for example, on the x3 face as 
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and ui is the normal velocity component at the i th corner of the face. A similar 
expression is used for temperature : 

where is the temperature value a t  the i th corner, found by interpolating the 
temperature values from the midpoints of adjacent cells. 

Forward time differencing in (13) introduces numerical dispersion, as can be seen 
by considering the truncation error. The Taylor series expansion of the first term on 
the right-hand side of (13) near time step n is, to first order, 

Differentiating (3) with respect to t and using (17) yields (Ramshaw & Dukowicz 
1979) 

T"+'-T" At x ( 3 n + t A t V - F + O ( A t 2 ) ,  

where F = u ( u - V T ) .  (19) 

The differential equation that is being approximated by the difference equation (13) 
is actually 

with the last term representing the source of numerical dispersion. The amplitude of 
this dispersion is negative, and therefore destabilizing. Its effect can be removed by 
adding a term with the opposite sign, so that the difference equation then becomes 

where 0 = $Atuu (22) 

is the tensor diffusivity required to make (21) an O(At2) approximation to the 
temperature equation. 

4. Stability of two-dimensional rolls 
We have examined the stability of two-dimensional roll solutions with respect to 

three-dimensional disturbances for Rayleigh numbers up to 5 x lo5 for initial state 
wavenumbers a, in the range 1.6 < as < 5,  corresponding to cell aspect ratios (cell 
width/layer depth) in the range 1.96 > X > 0.63. These calculations were started by 
projecting a two-dimensional solution onto the three-dimensional grid so that. the 
initial state is uniform in the y-direction. The computational domain imposes basic 
horizontal wavenumbers (a,, av) = (x/X, x / Y ) .  

The two-dimensional solutions were obtained by integrating two-dimensional 
versions of (3) and (8), subject to boundary conditions (9) and (lo), forward in time, 
as described in $3, for a particular Rayleigh number and cell aspect ratio, until a 
thermally equilibrated flow was obtained. In  most cases the equilibrium solution was 
also a steady state; however, in the cases with largest aspect ratio (smallest basic 
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wavenumber) the two-dimensional flow never reached steady state. Instead, the 
solution exhibited finite-amplitude oscillations about a mean state, caused by 
recurring instabilities in the thermal boundary layers. This is a well-known effect in 
two-dimensional convection calculations with large-aspect-ratio cells (Christensen 
1987; Machete1 & Yuen 1987). After projection onto the three-dimensional grid, a 
random temperature perturbation was added at  every interior grid point, and the 
calculations were restarted at  the same Rayleigh-number value. Some of the low- 
Rayleigh-number cases required integration to three or more diffusion time units to 
reach a steady state. The cases with higher Rayleigh number (>lo5) generally 
established stable patterns within one half of a diffusion time unit. All of the cases 
we discuss in this paper settled into what appear to be highly symmetric states, 
although this does not guarantee that the solution would remain in such a state 
indefinitely. 

The calculations presented in this section were made with two purposes in mind. 
First, calculations at  low Ra ( < 2  x lo4) are used for comparison with the stability 
theory results of Bolton BE Busse (1985) and Schnaubelt & Busse (1989), in order to 
verify the numerical method. The remainder of the calculations were made to 
determine the domain of stable rolls as the Rayleigh number is increased beyond 

Figure 1 summarizes the results of the calculations on stability of two-dimensional 
convection. Numerical experiments are identified by numbers, as in table 1. Filled 
symbols are used to denote the final states, with circles, diamonds, squares and 
hexagons referring to roll, bimodal, rectangular and hexagonal planforms re- 
spectively. Calculations in which cross-roll instabilities occurred are represented by 
two circles. Open circles refer to uz, the initial roll wavenumber in the x-direction. 
Filled circles refer to a,, the basic wavenumber of the box in the y-direction. The 
large circles indicate the final orientation of the roll solution. Thus the domain of 
stable rolls excludes all polygon symbols and all small open circles, and it includes all 
large circles. Figure 1 also shows the stability boundaries determined by Bolton & 
Busse (1985) as solid curves with CR denoting cross-roll instability. Zigzag 
instabilities are not likely to occur in the limited domains used in these calculations, 
and as discussed above, the skewed varicose instability is not expected to occur at  
infinite Prandtl number and therefore are not shown. The lowest solid curve 
corresponds to onset of convection ; the dashed continuations of the cross-roll 
instability curves represent the approximate limits of stable two-dimensional 
convection determined by our numerical results. Dotted lines are the side boundaries 
as determined by Schnaubelt & Busse (1989). 

Calculations 1-9 test the stability of small-aspect-ratio, high-wavenumber rolls. In 
calculations 1 4  and 6, a two-dimensional flow with basic wavenumber a, = 4.5 
(X  = 0.7) was used as the initial condition in a rectangular box with third dimension 
Y = 1.41, corresponding to a, = 2.23, the critical wavenumber at onset of convection. 
Since instabilities with this wavenumber often are found to have the fastest growth 
rates in linear stability analyses (Straus 1972; Bolton & Busse 1985), it is reasonable 
to choose it as the basic periodicity in the third dimension. All of these calculations 
resulted in cross-roll instabilities, as expected, with the final state consisting of a 
single steady roll in the (y, z)-plane. Case 1 began from an initial conductive state and 
evolved into a convective state, with flow in the (y, 2)-plane. 

Whereas calculations 1 4  and 6 tested flows well outside the cross-roll instability 
boundaries, calculation 5 was made with a, = 4.2 and a, = 3.6, values just outside 
and just inside the stability boundary, respectively, as determined by linear analysis. 

2 x 104. 
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FIGURE 1 .  Rayleigh number-wavenumber diagram for the stability of two-dimensional rolls in 
infinite-Prandtl-number thermal convection with free-slip boundaries. Central region corresponds 
to the domain of stable roll solutions. Solid curves are the stability boundaries as determined by 
Bolton & Busse (1985) for Pr = 10'. Dotted curves are the extensions determined by Schaubelt & 
Busse (1989). Symbols denote the final-state planform. Circles denote two-dimensional rolls, 
diamonds denote bimodal convection, squares and hexagons denote rectangular and hexagonal 
planforms, respectively. Kumbers correspond to the calculations listed in table 1. Calculations 
resulting in cross-roll (CR) instabilities are denoted by two circles: open circles represent the initial 
state wavenumber a,; filled circles represent a,, the basic wavenumber of the rectangle in the y- 
direction; large circles denote the final orientation of the roll solution. The field of stable rolls 
includes all large circles and excludes all three-dimensional solutions and all small open circles. The 
dashed continuations of the stability boundaries are approximate. 

As indicated in figure 1, cross-roll instability occurred, as predicted by theory. This 
result, along with the result of calculation 10, which used an initial state just within 
the stability boundary and did not produce cross-roll instability, demonstrates that 
our numerical method correctly determines stable planform regimes. 

Calculations 7-9 were made to extend the high-wavenumber limit of stable rolls to 
larger Rayleigh numbers. The boundary is best constrained by calculations 7 (a,  = 5, 
ay = 3.6, Ra = 5 x lo4) and 8 (a, = 5,  ay = 4, Ra = lo5) which were unstable and 
stable, respectively, to cross-roll disturbances. As Schnaubelt &, Busse (1989) found, 
the domain of stable rolls continues to  broaden on the high-wavenumber side as the 
Reyleigh number increases beyond 2 x lo4. This is substantiated by the results of 
calculation 9 (a, = 4.4, ay = 2.23, Ra = 2 x lo5) in which the initial roll solution 
remained stable. The domain of stable rolls shows no indication of terminating on the 
high wavenumber side of figure 1 ,  up to Ra = 2 x LO5. Because of this behaviour, and 
because the character of solutions with small initial wavenumbers proved to be more 
interesting, we did not pursue the high-wavenumber solutions any further. 
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Case 
no. Ra 

1 103 

4 104 
5 104 

7 5x104 

9 2~ 105 
10 2x104 
11  4~ 104 
12 105 
13 105 
14 105 
15 2x105 

17 105 

19 105 
20 105 
21 105 
22 105 
23 2~ 105 
24 2~ 105 
25 105 

2 2x108 
3 5x103 

6 2x104 

8 lo5 

16 5x105 

18 5x105 

a,(X) 
4.5 (0.7) 
4.5 (0.7) 
4.5 (0.7) 
4.5 (0.7) 
4.19 (0.75) 
4.5 (0.7) 
5.03 (0.625) 
5.03 (0.625) 
4.37 (0.72) 
1.6 (1.96) 
1.6 (1.96) 
1.6 (1.96) 
1.85 (1.7) 
2.23 (1.414) 
3.14 (1) 
1.93 (1.625) 
2.23 (1.41) 
2.23 (1.41) 
1.05 (3) 
1.05 (3) 
1.31 (2.4) 
2.23 (1.41) 
3.14 (1) 
1.05 (3) 
0.9 (3.5) 

a,(Y) 
2.23 (1.41) 
2.23 (1.41) 
2.23 (1.41) 
2.23 (1.41) 
3.59 (0.875) 
2.23 (1.41) 
3.59 (0.875) 
4 (0.781) 
2.23 (1.41) 
2.23 (1.41) 
2.23 (1.41) 
2.23 (1.41) 
3.14 (1) 

3.9 (0.8) 
3.14 (1) 
2.23 (1.41) 
3.14 (1) 
1.05 (3) 
1.05 (3) 
1.31 (2.4) 
3.14 (1) 
3.9 (0.8) 
1.05 (3) 
0.9 (3.5) 

3.14 (1) - 

Grid 
( X ,  Y ,  2) 
12, 22, 16 
12, 22, 16 
12, 22, 16 
12,22, 16 
12, 14, 16 
12, 22, 16 
15, 21, 24 
20, 25, 32 
23,45, 32 
32, 23, 16 
48,34, 24 
48, 34, 24 
40,24, 24 
45, 32, 32 
36,28, 36 
78, 48, 48 
34, 34, 24 
45, 32, 32 
72, 72, 24 
72, 72, 24 
58, 58, 24 
34, 24,24 
24, 19, 24 
72, 72,24 
84, 84, 24 

I.C. 

CD 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
2D 
RN 
RN 
2D 
2D 
HX 

HX+ 

Result KElvol 

CR 23.75 
CR 110.16 
CR 437.70 
CR 1085.2 
CR 750.1 
CR 2597.2 
CR 6696.2 
SR 1.077 x lo4 
SR 3.285 x lo4 
SR 2202.8 
BM 6501.6 
BM 1.927 x lo4 
BM 1 . 7 7 0 ~  lo4 
SR 1 . 9 5 4 ~  lo4 

BM 1 . 2 8 4 ~  lo5 
SR 1 . 9 0 7 ~  lo4 
SR 1 . 4 3 ~  lo6 
SQ+ 1.936 x lo4 

SQ- 1.904 x lo4 
SR 1 . 9 4 3 ~  lo4 
SR 4 . 4 2 6 ~  lo* 

SR 4 . 4 7 4 ~  104 

HX+ 1.911 x 104 

HX- 1.91 x 104 
HX+ 1 . 8 8 ~  104 

ave Nu 
1.718 
2.674 
3.743 
4.639 
4.696 
5.655 
8.276 
9.859 

6.103 
7.100 
8.883* 
9.244 
9.740 

13.11 
15.83* 
9.299 

15.96 
9.307 
9.589 
8.711* 
9.718 

9.560 
9.216* 

12.88 

13.04 

TABLE 1. List of computational parameters. CD = conduction ; CR = cross-roll ; 2D = two- 
dimensional roll; SR = stable roll ; BM = bimodal convection ; SQ = rectangular or square cell ; 
HX = hexagonal cell; +, - = up, down centre; RK = random temperatures; * = time average 
for Nu and KE 

In an effort to extend the stable roll regime at intermediate wavenumbers to 
higher Rayleigh numbers, calculations were made with parameter values (a5, a#, Ra) 
of (2.23, 3.14, lo5), (3.14, 3.9, 2 x lo5), (2.23, 2.23, lo5) and (2.23, 3.14, 5 x lo5), with 
the results indicated in figure 1 by numbers 14, 15, 17 and 18, respectively. As was 
the case for high-wavenumber initial states, the region of stable rolls with 
intermediate wavenumbers definitely extends to a t  least Ra = 5 x lo5. All of the 
solutions with intermediate- and high-wavenumber initial states eventually settled 
into steady two-dimensional flows. 

The results are very different for flows with initially small wavenumbers (large 
aspect ratios), representing the left edge of the stable roll field in figure 1. For 
Rayleigh numbers equal to or less than 2 x lo4, the behaviour is similar to the high- 
wavenumber domain, as indicated by calculation 10 made just within the cross-roll 
instability boundary. However, a t  larger Rayleigh-number values, the initial two- 
dimensional state is no longer steady, as pointed out earlier, and there appears to be 
an association between the onset of time dependence in flow restricted to two 
dimensions and the appearance of three-dimensional flow, when that restriction is 
relaxed. This can be seen in the behaviour of calculations 11-13 and 16 (figure l),  all 
of which began as time-dependent, initially two-dimensional flows. In  all four cases, 
instability set in as a cross-roll disturbance, and the final state is three-dimensional 
bimodal convection. 
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The change in planform with increasing distance from the boundary for stable rolls 
is shown in figures 2, 3 (plate l),  4 and 5, which illustrate the bimodal states found 
in calculations 11-13. Calculation 13, with parameter values (1.85, 3.14, lo5) is 
evidently very close to the stable roll boundary. As shown in figures 2 and 3 (a) ,  the 
steady state is bimodal convection, with the dominant initial roll supplemented by 
a weaker cross-roll with wavenumber 3.14 in the y-direction. Although calculation 11 
(1.6,2.23,4 x lo4) has a lower Rayleigh number than calculation 13, it  is farther into 
the three-dimensional regime. Figures 3(b) and 4 show that the stable flow is again 
bimodal, but in this case the secondary mode (a  = 4.45) is nearly as large as the 
primary one. The rising and descending flows occur in well-defined knots, which have 
a basic orthorhombic symmetry. The planform is similar to ones computed by Clever 
& Busse (1989) for a fluid with a Prandtl number of seven. As the wavenumber of the 
initial flow is decreased and the flow departs farther from the region of stable rolls, 
additional modes of motion appear in the final steady state. Figure 5 shows the final 
state for calculation 12, with parameter values (1.6, 2.23, lo5), representing an 
increase in Rayleigh number from calculation 11 by a factor 2.5. In this case, the final 
state is again primarily bimodal, but there is a perceptible contribution to the 
vertical velocity and temperature fields from oblique modes (modes with wave 
vectors oblique to the x- and y-axes), which results in hexagonal symmetry for the 
primary rising and sinking knots. These modes appear in the isothermal surfaces as 
oblique ‘thermal ridges’ in the top and bottom boundary layers, connected to the 
primary knots. The secondary or weaker knots retain the orthorhombic symmetry 
found in the flows closer to the stability boundary. 

As a check on the effect of mesh refinement, we recomputed cases 11, 14 and 15 
using coarser zoning. Cases 14 and 15 were recalculated using 34 x 24 x 24 and 
24 x 19 x 24 grids, respectively. The results are given in table 1 as cases 22 and 23. 
Kinetic energy for the coarsely zoned calculations is typically 1 YO lower than for the 
more finely zoned calculations, whereas the Nusselt numbers are only about 0.2 YO 
lower. In both cases, the final steady-state temperature and velocity patterns are 
virtually identical. Case 11 was also repeated with coarser zoning (32,23,16) in order 
to determine how reduced resolution affects the transition to three-dimensional 
convection (bimodal pattern, in this case). In calculation 11, the initial roll broke 
down to a bimodal pattern within 1.0 time units, which continued to evolve until 
about t = 1.35, when it settled into its final, steady bimodal pattern. In the more 
coarsely zoned calculation, the roll pattern began to break down at about the same 
time, but the development of the final steady bimodal pattern was slower. 
Oscillations in the position of the central knot continued well beyond t = 1.5. The 
steady state was approached through gradual attenuation of these oscillations. 

All of the final bimodal solutions for Ra < lo5 appear to be steady states. In  
addition, all of these were obtained from two-dimensional solutions that were 
inherently time dependent. This suggests a relationship between the onset of time 
dependence in convection restricted to two dimensions and the occurrence of three- 
dimensional convection, when that restriction is relaxed. Three-dimensional 
convection remains steady at Rayleigh numbers for which restricted two-dimensional 
convection is time dependent. 

The onset of time dependence in bimodal convection occurs somewhere within the 
interval lo5 < Ra < 5 x lo5. Bimodal convection is time dependent at  Ra = 5 x lo5, 
as indicated by the results from case 16 (a,,a,,Ra) = (1.93,3.14,5 x lo5). The time 
series of kinetic energy for this case is shown in figure 6 and the temperature 
structure at  t = 0.44 and 0.45 is shown in figures 3(c) and 3(d). While the 



Journal of Fluid Mechanics, W. 216 Plate 1 

69 

FIGURE 3 (a). Constant-temperature surfaces in steady bimodal convection for a,=1.85, ay=3.14 (X=1.7, 
Y=l.O), &=los (calculation 13). The region shown corresponds to the lower right quadrant of the planform 
shown in figure 2. Shown are isothermal surfaces for T=0.25 and 0.75. (b) Constant-temperature surfaces 
in steady bimodal convection for a,=1.6, ay=2.23 (X=1.96, Y=1.41) and Ru=4x1O4 (calculation 11). The 
region shown corresponds to the lower left quadrant of the planform shown in figure 4. Shown are isother- 
mal surfaces for T=0.25 and 0.75. (cd) Constant-temperature surfaces in unsteady bimodal convection for 
ax=1.93, a,.=3.14 (X=1.625, Y=1) and &=SxlO5 at (c) r=0.44 and (d) t=0.45, s t a d  from a two- 
dimensional roll initial condition (calculation 16). Shown are isothermal surfaces for T=0.25 and 0.75. 
(e) Constant-temperature surfaces in three-dimensional rectangular cell convection for 
aX=a,=1.05(X=Y=3), &=lo5 at r50.6, started from an initial two-dimensional solution. Isothermal sur- 
faces-are T=0.25 and 0.75. Region shown corresponds to upper half of figure 8 planform. U, Constant- 
temperature surfaces in three-dimensional square cell convection for a,=ay=1.31 (X=Y=2.4), &=lo’. 
Region shown corresponds to upper right quadrant of the planform shown in figure 10. Isothermal surfaces 
are T=0.25 and 0.75. 

TRAVIS. OLSON & SCHUBEIU (Facing p.  80) 
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FIGURE 7. (a, b) Constant-temperature surfaces in hexagonal cell convection for a,=ay=1.05 (X=Y=3), 
Ra=105: (a)  up-hexagon solution (corresponds to lower half of figure 9); (b) down-hexagon solution. 
Isothermal surfaces are T=0.25 and 0.75. (c-3.  Constant-temperature surfaces in time-dependent hex- 
agonal cell convection for a.,=ay=1.114 (X=Y=3.5) through one period of oscillation at (c) r=0.5260; (4 
0.5277; (e) 0.5294; and (fl 0.5311. 
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FIGURE 6. Time series of average kinetic energy in time-dependent bimodal convection from 
calculation 16. 

tempmature structure is clearly bimodal, it differs from the steady states obtained 
closer to the stability boundary because of an incipient descending plume, a thermal 
ridge, which is evident along the z-axis in the T = 0.25 isothermal surface (figure 
3c, d). This perturbation, which might represent a pattern-breaking disturbance, is 
nearly periodic in time although its strength varies from one period to the next. Less 
noticeable are smaller fluctuations in the three established plumes. These are due to 
small perturbations in the thermal boundary layers being swept into the plumes by 
the large-scale flow. Although we cannot verify that the fluctuation is not simply a 
long transient, there are differences between this case and the steady bimodal flows, 
which lead us to expect that this solution is truly time dependent. In  the cases where 
steady states were found, the initial three-dimensional patterns were not symmetric, 
but the symmetry increased with time through a sequence of adjustments, which led 
to a final symmetric planform. In  contrast, case 16 does not show a drift towards a 
more symmetric planform. Upwellings are twice as numerous as downwellings, and 
the incipient downwelling plume never becomes fully established. This behaviour is 
similar to the mechanism for time dependence identified in finite-Prandtl-number 
convection by Clever & Busse (1989). 

5. Three-dimensional convection in large-aspect-ratio rectangular boxes 
The flows described in the previous section were computed in rectangular boxes in 

which the largest horizontal dimension is less than twice the layer depth. This 
confinement substantially restricts the types of flow that can occur. It is therefore 
important to  determine if different final planforms result when the lateral dimensions 
of the domain are increased. 

In  order to address the effects of increased aspect ratio, we have made five 
additional calculations at Ra = lo5. Three of these were made in a rectangular box 
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PXQURE 8. Three-dimensional rectangular cell convection for a, = ay = 1.05 (X  = Y = 3), Ra = lo5 
at t = 0.6, started from an initial two-dimensional solution. (a) Midplane ( z  = 0.5) contours of 
temperature, (b) vertical velocity, and (c) the pattern of upper surface ( z  = 1) horizontal velocitJ- 
Reflection plane is y = 3.0. 

with horizontal dimensions X = Y = 3, one with X = Y = 2.4 and one with X = Y = 
3.5. Calculation 19 listed in table 1 had as initial conditions a two-dimensional flow 
with aspect ratio 3. It therefore represents an extreme case of the stability 
calculations presented in the previous section. For comparison, calculation 20 was 
made at the same Rayleigh number and in the same domain as 19, but starting from 
purely random initial conditions, that is, without a structured temperature field 
present. Calculation 21 was also started with random temperature conditions in a 
2.4 x 2.4 x 1 rectangle. Calculation 24 was made to test the symmetry properties of 
the hexagonal solution found in calculation 20, and calculation 25 was made to 
determine if hexagons can persist in very large boxes. Results of these calculations 
are shown in figures 3, 7 (plate 2) and 8-13. Midplane velocity and temperature fields 
at  t = 0.6 for the initially two-dimensional flow in the 3 x 3 x 1 box (calculation 19) 
are shown in figure 8. Figure 3 ( e )  shows the structure of selected isothermal surfaces 
at  the same time. The flow has nearly reached steady state, with kinetic energy 
fluctuations less than 1 % of the mean value. At  t = 0.6 the flow has settled into a 
rectangular planform, with ascending motion in the centre and descending flow along 
the four cell walls (an up-rectangle). The dominant mode consists of aspect ratio 1.5 
rolls aligned along the y-direction. 

Quite different results were obtained when the calculation was repeated using 
random initial temperature conditions. Midplane velocity and temperature sections 
a t  t = 0.5 are shown in figure 9. Figure 7 (a)  shows the structure of selected isothermal 
surfaces at  the same time. In this case the flow settled into a hexagonal planform by 
t = 0.03, and the kinetic energy becomes nearly steady by t = 0.2.  Very small 
fluctuations persist to t = 0.5, but these do not affect the basic flow symmetry. As 
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FIGURE 9. Three-dimensional hexagonal cell convection for a, = ay = 1.05 ( X  = Y = 3), Ra = lo5 
at t = 0.5, started from random temperature initial conditions (calculation 20). (a) Midplane 
( z  = 0.5) temperature contours, ( b )  vertical velocity contours, and ( c )  upper surface ( z  = 1) 
horizontal velocity pattern. Reflection plane is y = 3.0. 

shown in figures 7(a) and 9, the planform is an up-hexagon, with fully connected 
descending sheets intersecting at angles in, surrounding a columnar upwelling. The 
existence of hexagonal cell solutions was anticipated by the results of the roll 
stability analysis discussed in the preceding section, in which elongated rolls evolved 
to bimodal convection with hexagonal knots. 

To our knowledge, this is the first demonstration that hexagonal symmetries occur 
in symmetric base-heated Rayleigh-BBnard convection. It is well established that 
hexagonal planforms occur just above the critical Rayleigh number when variable 
fluid properties are present, such as temperature-dependent viscosity (Palm 1960 ; 
Busse 19676; Oliver & Booker 1983; White 1988). We have already mentioned the 
results from spherical-shell convection calculations, which show a preference for flow 
with descending sheets surrounding rising columns. However, none of the symmetry- 
destroying effects produced by sphericity, variable properties or internal heat 
production are present in these calculations, and yet it appears that hexagonal cells 
are either stable planforms, or are so weakly unstable that the breakdown to 
rectangular planforms occurs too slowly to appear in our numerical calculations. It 
is only by coincidence that calculations 19 and 20 resulted in cells with the same 
polarity. Since the horizontal midplane is a symmetry plane for steady states, there 
is no preference for either ascending or descending centres. In order to demonstrate 
this fact, we inverted calculation 20 and used it as the condition for case 24. The 
result is a down-hexagon, shown in figure 7 (b). 

The results from the 3 x 3 x 1 box calculations demonstrate the preference for 
steady three-dimensional cellular planforms with this aspect ratio at Ra = lo5, but 
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FIGURE 11. Time series of average kinetic energy for time-dependent hexagonal cell convection 
at Ra = lo5 for a, = ay = 0.9 ( X  = Y = 3.5). 

they do not establish the preferred planform. Indeed, i t  appears that  differences in 
initial conditions are important in planform selection. In order to provide some 
additional data on planform preference, we have repeated the random initial 
temperature condition of calculation 20 in a smaller rectangular box, with dimensions 
2.4 x 2.4 x 1 (computational parameters are given in table 1, calculation 21). The 
planform a t  t = 0.5 is shown in figure 10. The shapes of selected isothermal surfaces 
are shown in figure 3 (f). This calculation produced a down-square planform which 
appears to be stable, although i t  does not reach steady state. The kinetic energy 
continues to fluctuate with & 5 % variation about its mean value. These fluctuations 
appear most conspicuously as variations in the strengths of ascending flow vertices 
at the midpoints of the cell boundaries, and as variations in the pattern of thermal 
ridges connected to the central downwelling. The down-square pattern obtained in 
this case demonstrates again that both up- and dow'n-cellular flows are realizable and 
it also suggests that rectangular planforms may be preferred over hexagons when the 
aspect ratio is less than three. 

Whereas square cell or bimodal planforms were obtained in small-aspect-ratio 
boxes, hexagonal planforms are clearly stable in larger domains a t  Ra = lo5, as 
indicated by the results of calculation 25. This case was initialized by expanding the 
hexagonal solution from case 20 to fit a 3.5 x 3.5 x 1 box. The hexagonal planform 
persisted, but unlike the solution in the 3 x 3 x 1 box i t  was unsteady, as shown by 
the kinetic energy time series in figure 11 and the sequence of isothermal surfaces 
shown in figure 7(c-j'). Two types of perturbations are present - travelling thermal 
ridge disturbances in the upper and lower thermal boundary layers and incipient 
descending plumes which periodically form a t  specific locations and threaten to alter 
the basic flow pattern but never succeed. The sequence in figure 7 (c-f) shows plume 
development through one cycle, lasting 0.0068 time units. In  figure 7 ( c )  the variable 
plume is fully extended, in 7 ( d )  it  has weakened and the kinetic energy of the flow 
is near its minimum, and in 7(e)  a new plume is developing and the kinetic energy 
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FIGURE 12. Dimensionless kinetic energy density versus Rayleigh number for all calculations. Final 
planforms are denoted by circles (rolls), diamonds (bimodal convection) and squares (rectangular 
cells). 
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FIQURE 13. Volume-averaged Nusselt number versus Rayleigh number for all calculations. The 
symbols refer to final state planforms as in figure 12. The heat transfer law Nu = 0.268Ra0-319 
obtained for a, = 3.14 (X = 1 )  rolls by Schubert & Anderson (1985) is shown for comparison. 

is near its maximum. Those time intervals with large kinetic energy fluctuations in 
figure 11 exhibit this behaviour, while during the quiet intervals the incipient plume 
is better established and less variable. Only one plume in the box is so variable; the 
other plumes fluctuate only slightly. The flow appears to  be seeking a smaller 
hexagonal planform but is unable to make the transition. 

The dimensionless kinetic energy density and average Nusselt number Nu are 
given for each calculation in table 1. They are plotted against the Rayleigh number 
in figures 12 and 13. Planform variations in Nusselt number at constant Rayleigh 
number do not exceed 10 %. Among the various planforms, stable roll solutions tend 
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to have the largest Nusselt-number values a t  a given Ra. Figure 13 shows the fit of 
all calculations to the power law 

Nu = 0 . 2 6 8 R ~ ' . ~ ' ~  (23) 
obtained for two-dimensional rolls with a, = 3.14 (X  = 1 )  by Schubert & Anderson 
(1985). The deviation from (23)  is due to planform variations and to  the sensitivity 
of heat transfer to aspect ratio among the roll solutions. Nevertheless, this 
comparison indicates that the heat transfer law ( 2 3 ) ,  derived from roll solutions, is 
a reasonably good zeroth-order predictor of heat transfer in fully three-dimensional 
convection. 

Planform variations in kinetic energy a t  constant Rayleigh number are greater. 
For example, a t  Ra = lo5, the kinetic energy of a stable roll (solution 8) and the fully 
three-dimensional planforms differ by 90 %. In addition, the kinetic energy of stable 
rolls does not differ systematically from the kinetic energy of the three-dimensional 
patterns. Indeed, there appears to  be little or no relationship between the planform- 
dependence of kinetic energy and the planform-dependence of Nusselt number. 

6. Conclusions 
Three-dimensional, time-dependent finite-difference calculations of thermal con- 

vection in an infini te-Prandtl-number fluid layer with isothermal and free-slip 
horitontal boundaries show that steady two-dimensional rolls remain stable for 
Rayleigh numbers as large as 5 x lo5, when the aspect ratio (cell width to depth ratio) 
is 1.41 or less. Rolls with larger aspect ratios are unstable to  three-dimensional 
disturbances at  Rayleigh-number values above approximately 4 x lo4. Calculations 
made in small rectangular domains (with horizontal dimensions less than twice the 
layer depth) show that time-dependent two-dimensional large-aspect-ratio rolls are 
unstable and evolve into bimodal convection. I n  some cases, steady three- 
dimensional convection is dominantly bimodal but with alternating rows of 
orthorhombic and hexagonal symmetric knots. Time dependence occurs in bimodal 
convection a t  R a  = 5 x lo5. Calculations in larger aspect ratio domains produce 
cellular, fully three-dimensional planforms. Steady hexagonal cells evolved from 
random temperature initial conditions in a 3 x 3 x 1 rectangular domain at  Ra = lo5, 
whereas rectangular cells resu1t)ed when the same simulation was initialized with a 
two-dimensional roll. A square-cell planform was obtained at Ra = lo5 from random 
initial temperature conditions in a 2.4 x 2.4 x 1 rectangular domain. A hexagonal cell 
solution a t  Ra = lo5 in a 3.5 x 3.5 x 1 box exhibits oscillations in kinetic energy and 
Nusselt number due to the combination of recurring thermal boundary-layer 
instabilities and incipient plumes. Our results indicate that bimodal, hexagonal and 
rectangular planforms are all realizable a t  high Rayleigh numbers, depending on the 
initial conditions and the area of the rectangular box. The sensitivity of Nusselt 
number to planform variations is weak. The power law expression Nu = 0 . 2 6 8 R ~ ' . ~ l ~  
obtained for aspect-ratio one rolls fits the heat transfer in all of our calculations to 
within f5%. 

These calculations have been made in conjunction with the Los Alamos IGPP 
workshop on mantle convection. 
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